Attempts to separate apparent observational range bias from true geodetic signals

Graham Appleby, Philip Gibbs, Matthew Wilkinson, Vicki Smith

Space Geodesy Facility, Herstmonceux, UK

Vincenza Luceri

e-GEOS, CGS, Italy

Background

- Using laser, GPS and absolute gravity data for long-term monitoring of Herstmonceux site;
- Analysis of global laser range data to LAGEOS, ETALON
- Use of and analysis of GPS networks that include HERS and HERT
- Operation and analysis of absolute gravity data
 - to include collaborations to look into local geology and hydrological loading effects on gravity.

Motivation

- Long time span of accurate laser range observations is key to definition of ITRF
- Within ILRS Analysis Working Group, ongoing programme of re-analysis of LAGEOS data from 1983-date
- To include generation of range-bias time series
 - Can reveal possible engineering problems

Motivation

- High correlation of course between station height and range bias
 - Depends upon minimum ranging elevation
- Thus potential danger of attributing real height change to system problems
- Ideal is to have good on-site QC and not allow system changes to affect range accuracy
 - plus orbital QC see e.g.new http://sgf.rgo.ac.uk
- However, recent email exchanges suggest some Herstmonceux range accuracy issues are emerging.

Range bias solutions (CGS) for Herstmonceux

LAGEOS

LAGEOS-2

LAGEOS

End Maryland event timer era

End Stanford counter era

RB time series

- Maryland counter era (1983-1990):
 - mostly un-removable 0->~20mm variable bias;
 - Appleby et al, 1990
 - RB values estimated recently in consistent way during POD by Luceri, 2007
 - As time series of corrections: on ILRS website
- Stanford counters era (1992-2007)
 - Clear 'real' seasonal signal, real height changes
 - But engineering tests at Herstmonceux also reveal
 ~8mm potential bias depending on targets' ranges;
 - Gibbs et al, 2006, 2007

Tests and estimates on Stanford counters

- From tests or estimates, following table constructed via comparison with high-spec event timer.
- Computed for LEO-MEO
- Test results in bold
- Re-iterate the uncertainty in this approach
 - High-frequency, several mm, variations present
 - Not possible to do an exact 'calibration'
 - Uncertainty may be as much as 3mm
 - But invitation remains for stations to send us their counters for rapid (<1 day) checks

STATION		PAD	Calib	LEO	LAGEOS GPS		
NAME		ID	error	error	error	error	
BEIL	Beijing	7249	-12	- 2	- 2	- 3	
BORL	Borowiec	7811	- 9	- 9	- 9	0	
BREF	Brest	7604	-10	0	0	- 1	
GLSV	Kiev	1824	- 6	+ 4	+ 4	+ 3	
HELW	Helwan	7831	0	+10	+10	+ 9	
HERL	Herstmon.	7840	- 7	- 7	- 7	- 7	
KTZL	Katzively, Ukraine	1893	0	+10	+10	+ 9	
KUNL	Kunming, China	7820	- 9	+ 1	+ 1	0	
POT3	Potsdam	7841	0	+ 5	+ 5	+ 5	
POTL	Potsdam	7836	0	+ 3	+ 3	+ 3	
SFEL	San Fernando	7824	0	+ 8	+ 8	+ 8	
SISL	Simosato, Japan	7838	+ 1	+11	+11	+10	
SJUL	San Juan	7406	0	+10	+10	+ 9	
WUHL	Wuhan	7231	0	+10	+10	+ 9	
ZIML	Zimmerwald	7810	- 3	- 3	- 3	- 3	
GRSL	Grasse	7835	- 1	+ 9	+ 9	+ 8	

Range correction (mm) table for stations using Stanford counters; Stations in **bold** have had counters measured at SGF; others are estimates NB: all values subject to error of 3mm.

LAGEOS-2

Stanford counter era

Start Thales event timer era

High-quality event timer

- Based on high-spec Thales units, ps-level linearity
- Introduced 2007 Feb 11 (doy 41)
- From that date, system should be bias-free at mm-level
- However, 'jump' in LAGEOS-2 RB series starts 2007 ~ doy 21 and again 2008 ~ doy 245 ?

Height time series for Herstmonceux from LAGEOS and ETALON (SGF and ASI solutions)

arrows mark RB 'jumps' dates

RB or local deformation?

- From this height series, it was not immediately apparent that there is a 2007 'jump', RB problem.
- Previously-observed correlation between seasonal water-table level and height – loading or soil moisture driven:

Comparison with HERS GPS system, close to laser ranger

Laser series (green), GPS (SOPAC, black)

In close-up, from 2006 to date

Addition of absolute gravity measurements

- From early 2006, an FG5 absolute gravimeter has been operated on site
- From late 2006, weekly, 24-hour observing sessions
- Average gravity variations converted to equivalent height changes using estimated 1µGal = -4.5mm (following Zerbini et al, 2007)
 - conversion to be refined in future, to consider loading mechanisms
- Precision of average values ~4mm

Laser (green), GPS (SOPAC, black) and height-from-gravity (red)

Conclusion

- This work suggests that there is a problem with Herstmonceux laser data
 - 2007.1 -> 2007.4 and 2008.7->
 - Confirmed by several laser analysts of LEO and LAGEOS missions
- Shows value of multi-techniques closely co-located
- Urgent review underway at SGF